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Analysis of Microstrip-Like Transmission Lines
by Nonuniform Discretization of Integral

Equations
EIKICHI YAMASHITA, MEMBER,

Abstract—The nonuniform discretization of the integral equation on
the tangential electromagnetic (EM) field on the boundary surface is

proposed as a numerically efficient method to analyze the microstrip-like

transmission lines. The calculated results of the propagation constant of

the microstrip line based on this method are compared with other

published analytical results. Various types of planar striplines are

treated by the same formulas. The dominant and higher order modes of
a shielded microstrip line are discussed and compared with the longitudi-

nal-section electilc (LSE) and linear synchronous motor (LSM) modes

of a two-medium waveguide.

K INTRODUCTION

I N the early stage of microstrip-line analyses, the TEM

approximation was effectively employed to calculate the

line capacitance as a basic parameter of the inhomo-

geneous transmission line [1]-[4]. Though this approx-

imation was useful in a wide range of frequencies, more

rigorous analytical methods have been explored to find its

theoretical limitations [5]–[8]. The dispersion character-

istics of the micro strip line at high frequencies, for example,

have been reported by many papers. However, published

numerical values even on the same problem are not neces-

sarily in good agreement.

This paper describes a straightforward and numerically

effective method to compute characteristic values of micro-

strip-like transmission lines. The main features of this

method are the formulation of integral equations for general

structures in a form of Zysman and Varon [7] and the

derivation of the solution by the nonuniform discretization

of the integrals. Numerical results based on this method are

compared with other data [8]–[11 ] and empirical formulas

[12]-[14]. The treatments of coplanar striplines [15], [16],

shielded slot lines [17], and micro strip lines are shown. The

dominant and higher order modes of microstrip lines are

also discussed compared with the LSE and LSM modes of a

two-medium waveguide.

II. FORMULATION OF INTEGRAL EQUATIONS

Fig. 1 shows a microstrip-like transmission line which

contains three dielectric layers, multistrip conductors, and

a metallic shield enclosure. The strip conductors are as-

sumed to be negligibly thin and the line lossless.
A hybrid-mode analysis is apparently necessary in this in-

homogeneous structure. When the scalar potentials for

TM waves and TE waves are defined by i(’) and l(h),

respectively, the electromagnetic (EM) fields of hybrid
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Fig. 1. Microstrip-like transmission line.

modes [18] are given by

E,i = j
ki2 – ~z ~ ~e)(x,y)e_jDz

1’

Hzi = j kiz – ~z ~ @)(x, y)e-jO.

B’

~tj Q Vt~/e)(x,y)e-j~z – &o a,

P

(1a)

(lb)

x Vttjf)(x,y)e-joz (lC)

IIti = Vt~~h)(x,y)e-jOz + ~i fz, x Vt~$)(x,y)e-jBz, ,
P

i = 1,2,3 (id)

where co is the angular frequency, ,uO is the magnetic

permeability of a vacuum, &i is the permittivity in the ith,—
medium (i = 1,2,3), kt is ~J&ipo5the subscript t denotes

the transverse direction, a= is the z-directed unit vector, and

~ is the unknown phase constant of the hybrid mode.

The general solution of the wave equation in each di-

electric layer can be obtained by the method of the separa-

tion of variables. After applying the boundary conditions

on the surface of the shielding conductor to the general

solution, one obtains the following form:

~l(e) = ~ ~$e) sinh (IX:’)y) sin (a”x) (2a)

“ sin (anx) (2b)
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f D;’) sinh {U$’)(b - y)} sin (a”x) (2C)
n=l

f A~’) cosh (IX~l)y) cos (anx) (2d)
~=o

~ {ll~h) cosh (a.(2)y) + C.(h) sinh (ti~2)y)]
~=()

“ cos (a.x) (2e)

~ Dn(h) cosh {LX~3)@ - y)} cos (a.x) (2f)
~=o

nn
a.=—

a

an(i) = da.2 + /32 – kiz, i = 1,2,3

and A~(e), .%(e), Cn(e), Dn(e), Au(h), Bn(h), Cn(h), and D~(h) are

constants to be determined,

The boundary conditions of EM fields to connect these

potentials are expressed as follows:

l)y=hl

Ezl = EZ2, (O<x <a) (3a)

Hzl = Hzz, (O Sx <a) (3b)

EX1 = EX2, (O Sx <a) (3C)

HX1 = HX., (O<x <a). (3d)

2)y=h1+h2

EZ2 = EZ3, (O<x <a) (4a)

EX. = EX3, (O<x <a) (4b)

(

j (x)e-jLz, (a! < x S a~+l,

EX2 = o
i = 0,1, ”CO,N, namely, on dielectrics)

7 (a,’ < x < a:,
i = 1,2,. . . ,N, namely, on conductors)

(4C)

/

o, (at S x < a~+l,

HX2 – HX3 =
i = 0,1, ” “’o,N)

g(x)e-jez, (a{ S x < a;,

\ i = 1,2,”. “,N) (4d)

HZ2 = HZ3, (af S x < a;+ ~,

i = 0,1,”” “,N) (4e)

EZ2 = O, (ai’ < x S a:,

i = 1,2,.0 .,N). (4f)

First, the EM fields in (1) are substituted for the boundary

conditions in (3a)–(4d). By using the orthogonality of

sinusoidal functions, the constants, An(e), Bn(’), Cm(e), Dn(e),

A (h), B (h), Cn(h), D“(h), can be derived as coefficients of the

F&rier”series expansion where, for simplicity, the following

notations are defined:

,,

G.[g(t)]= i f’ dg) sin (M) d~. (5b)
inl at’

The rest of the conditions, (4e) and (4f), result in a set of

homogeneous integral equations on the unknown functions,

jlt) (ai” < & < aj+l, i = 0,1,”” “,N) and g(g) (a/ < t <
a~, i= 1,2,. . . ,N), Physically, g(~) is proportional to the

z directed electric currents on the boundary surface.

~~o{Pn(/3)Fn[j(~)] + Rn(J3)Gn[g(&)]} cos (anx) = O,

(as < x < a~+l, i = 0,1,”. “,N) (6a)

f {Rn(/l)Fn[f(tj] + Qn(/3)Gn[g(<)]} sin (anx) = O,
~=o

(ai’ s x s a:, i = 1,2,”- “,N) (6b)

where Pn(~), Qn(/?), and R.(p) are given in the Appendix.

III. NUMERICAL SOLUTIONSBY NONUNIFORM

DISCRETIZATION

The preceding simultaneous homogeneous integral

equations (6) are numerically solved by the discretization

of the integral regions, {O < ~ < al’, al’ s < s al”, os o,

a~’ S & S aN”, aN” S 5 S a}, where the number of sub-

regions are {ikfo,ikfl, 0”0 sM2N}$ respectively, and the total
number of subregions is M. When the functions to be solved,

~(t) and g(t), are assumed to be constant in each subregion,
the simultaneous integral equations (6) are rewritten as a

set of simultaneous homogeneous linear equations with M

variables. The determinant of these linear equations should

vanish in order to have nontrivial solutions. The phase

constant /3 can be calculated by solving this determinant

equation.

The computation accuracy depends on the way of the

discretization when the total number of subregions is tied.

We apply the nonuniform discretization method, which was

developed in the TEM analysis of microstrip line [19], to

the present case. There is a fact in the EM theory that fields

vary very rapidly near strip-conductor edges. Therefore, our

principle of the discretization is that the integral regions

should be discretized more precisely when the considering

point is closer to the edge. Fig. 2 shows an illustration of the

uniform and nonuniform discretization methods, Fig. 3

shows the computation accuracy of the two discretization

methods in the case of a shielded microstrip line. When the

total number of subregions M is increased, the nonuniform

discretization is seen to result in much faster convergence

than the uniform discretization. The nonuniform discretiza-

tion is employed throughout our work.

The numerical data obtained based on this method are

compared with published data by other methods [8]-[1 1],

in Fig. 4, and with those by empirical formulas [12]–[14],

in Fig. 5. These curves indicate that our results are very

close to those of Kowalski and Pregla (the mode-matching

method) [11 ] in a wide range of frequencies; This agreement

verifies the accuracy of the two methods. The empirical

formulas in Fig. 5 seem to lose the accuracy at high

frequencies.
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Fig. 2. Illustration of two discretization methods.
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Fig, 5. The comparison of this method with empirical formulas.
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Fig. 6. Various shielded striplines with similar boundary conditions.
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Fig. 7. The.f–D characteristics of the structures in Fig. 6. a = 20 mm,
~lo= lz~ = 4.5 mm, lz~ = 1.0 mm, NJ= d = 2.0 mm, &l* = &z* =

. .

IV. VARIOUS SHIELDED STRUCTT.JE’.ES

The dispersion characteristics of the dominant mode of

various shielded planar structures were investigated by the

preceding method in a similar fas~on. Fig. 6 shows the

cross-sectional view of shielded transmission lines. Fig. 7

shows their characteristics for the cases, .52* = 2.55,
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Fig. 8. The f-~ characteristics of the shielded slot lines in Fig. 6(d).
/z%*==k;~~ 4.5 mm, hz = 1.0 mm, d = 2.0 mm, &l* = 83* = 1.0,

. .

82 * = 9.35, and 82* = 20.0. It is noted that the character-

istics of the coplanar structure have a similarity to those

of the odd-mode coupled microstrip line, and the slot line

has a quite different nature from microstrip lines, though

both are of the planar structure. Fig. 8 shows the dependence

of the phase qonstant of the shielded slot lines in Fig. 6(d)

on the frequency and the width of the shield conductor. It

is seen that the phase constant is not much affected by the

width in the high-frequency region since the EM field energy

is concentrated around the slot at high frequencies.

V. HIGHER ORDER MODES OF SHIELDED MICROSTRIP

LINES

This method was applied to the analysis of higher order

modes of various structures. The cases of the shielded

microstrip line, for example, are shown in Figs. 9-12. The

longitudinal-section electric (LSE) and linear synchronous

motor (LSM) modes of the two-medium waveguide in

Fig. 9 are seen to be gradually changed to stripline modes

when the center strip conductor appears and the strip

width is increased.

By comparing Figs. 9 and 10, the following are observed.
1) The dominant mode close to the TEM solution appears

in Fig. 10 because of the existence of the center conductor.

2) The degeneracies existing between even modes (solid

lines) and between odd modes (dotted lines) in Fig. 9 have

been resolved in Fig. 10. However, the degeneracies between

even and odd modes in Fig. 9 have not been resolved in

Fig. 10 because of the structural symmetry.

3) While the odd-mode characteristics in Fig. 9 are not

much changed in Fig. 10, the even-mode characteristics are

quite changed there.

When the characteristics of the lines with various strip

widths are compared in Figs. 10-12, the following are

observed with the increase of the width.
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Fig. 9. The &/3 characteristics of the LSE and LSM modes in a
two-medium waveguide.
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Fig. 10. The ~–~ characteristics of the shielded microstrip line with
the strip width of 0.635 mm.
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Fig. 11. The &D characteristics of the shielded microstrip line with
the strip width of 1.27 mm, compared with other available data.



YAMASHITAAND ATSUKI: ANALYSISOF TRANSMISSIONLINES 199

3!0

D

existence of a center strip conductor in order to explain the

f DOMINANT MODE complex shape of the phase constant curves for higher

order modes of microstrip lines.
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---- I-4.. --” APPENDIX,.- ,,.,,,.. Pn(p),R.(fl),Qu@ in (6) = given by,,-

; ,.,
,,,.’

Pn(f) = ~
[(

‘i~o ~nil)un(z) tanh2 (~ntl)hl) + ~ tanh2 (&n(2)h2)/’
1.0 ,,‘ E2 1,/, n

,/,
,/’

,’
( )

+ ctn(1)2 + L ctn(2)2 tanh (ct~(l)hl) tanh (a~(2)h2)
E2 1

0 ; . ctn(3)tanh (a.(3)h3)
10 15 20 25

FREQUENCY (GHz)
~ ~p~ _ /?an

n
[{

Mn(2) tarh (ct”(l)hJ + ~ citn(l) tanh (&.(2)h2)

Fig. 12. The ~-~ characteristics of the shielded microstrip line with A. E2

the strip width of 2.54 mm.
+ u.(i) tanhz (U.(l)hl) tanh (u.(2)hJ) + U.(2)

1) The phase constant of the dominant mode is gradually

changed.

2) While the even-mode characteristics are not much

changed, the odd-mode characteristics are changed rapidly.

3) The cutoff frequencies of the first- and the third-order

mode of the shielded microstrip line are almost equal to the

cutoff frequencies of the LSE and LSM modes of the

corresponding two-medium waveguide.

4) The first higher order mode of the shielded microstrip

line is the even mode when the strip is narrow, and the odd

mode when the strip is wide,

Some of these numerical data are compared with other

available data [8], [11] in Fig. 11. Again, our results are

in good agreement with those of Kowalski and Pregla [11].

A small dip is noticed on the curve of the third higher order

mo”de (solid line) at about 22 GHz in Fig. 11. The complexity

of the phase constant curves for higher order modes such as

this dip can be understood only by considering the resolution

of waveguide-mode degeneracies as pointed out in the

preceding.

VI. CONCLUSIONS

This paper described a method to analyze the microstrip-

like transmission lines. The nonuniform discretization ap-
proach was found to be numerically effective in finding

solutions of integral equations for the microstrip-like

transmission lines. The results of computations in the case

of the shielded microstrip line were very close to one of

published data in a wide “range of frequencies. The limita-

tions of publis~ed empirical formulas at high frequencies

were also recognized. Various planar transmission lines

were compared to each other from the viewpoint of the

f-/l characteristics.

The higher order modes of the shielded microstrip lines
were compared with those of the LSE and LSM modes. The

observation on the similarity of cutoff frequencies between

these modes may be useful to estimate the frequency range

of the dominant mode of the microstrip line in a simple way.

It was also found to be important to investigate the resolu-

tion process of waveguide-mode degeneracies due to the

“(_~k22 – k12&f

)
tanh (cxn(l)hl)tanh2 (et.(2)h2)

E2 an(w 1

u (3) tanh (un(3)h3)+ Mn(1)~n(2)n

“(tanh2 (aH(l)hl) + ~ tanh2 (U.(2%2)
82 1

( )
+ ~ (1)2 + ~ M~(2)2 tanh (u~lJhl) tanh (a.(2)h2)n

.5’2 1

“ tanh (a. ‘l)hl) tanh (a. (%2) + a,,, “(I)a (2)

“ tanh2 (IZ.‘l)hl) tanh2 (a. (’2)h2)
)

a.(3) tanh (ctn(3)h3)

(tanh (ct~2)h2) + ~ IX~l)Ct.(2) tanh2 (u~l)hl)
E2

}
“ tanh (et.(2)h2) a.(3) coth (a”(3)h:J 1
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.

.

+

+

+

+

E2

(k22 – anz) tanh (ct~’)h,)

~nu)(~22 – a.z) tanh2 (u.(l ‘hi) tanh (a.(z)hz)

( ‘2 (k,’ – k,’)a~f’) ~ (k22 – an’) + ~
e’ an 1

1
tanh (a~l)hl) tanhz (a~z)hz) a~3) tanh (a~3)k3)

‘k32 - a~@’)aJ2) (’anh’(a~’)hl)

~ tanhz (u.
}(

(’%2) + an(1)2 + g an(’)’
E’ E2 )

tanh (a. ( l)hl) tanh (Mn 1(’)/22).
J
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