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Analysis of Mlcrostnp Like Transmission Lines
by Nonuniform Discretization of Integral
Equations

EIKICHI YAMASHITA, MEMBER, IEEE, AND KAZUHIKO ATSUKI

Abstract—The nonuniform discretization of the integral equation on
the tangential electromagnetic (EM) field on the boundary surface is
proposed as a numerically efficient method to analyze the microstrip-like
transmission lines. The calculated results of the propagation constant of
the microstrip line based on this method are compared with other
published analytical results. Various types of planar striplines are
treated by the same formulas. The dominant and higher order modes of
a shielded microstrip line are discussed and compared with the longitudi-
nal-section electric (LSE) and linear synchronous motor (LSM) modes
of a two-medium waveguide. .

I. INTRODUCTION

N the early stage of microstrip-line analyses, the TEM
approximation was effectively employed to calculate the
line capacitance as a basic parameter of the inhomo-
geneous. transmission line [1]-[4]. Though this approx-
imation was useful in a wide range of frequencies, more
rigorous analytical methods have been explored to find its
theoretical limitations [5]-[8]. The dispersion character-
istics of the microstrip line at high frequencies, for example,
have been reported by many papers. However, published
numerical values even on the same problem are not neces-
sarily in good agreement.

This paper describes a straightforward and numerically
effective method to compute characteristic values of micro-
strip-like transmission Jines. The main features of this
method are the formulation of integral equations for general
structures in a form of Zysman and Varon [7] and the
derivation of the solution by the nonuniform discretization
of the integrals. Numerical results based on this method are
compared with other data [8]-[11] and empirical formulas
[12]-[14]. The treatments of coplanar striplines [15], [16],
shielded slot lines [17], and microstrip lines are shown. The
dominant and higher order modes of microstrip lines are
also discussed compared with the LSE and LSM modes of a
two-medium waveguide.

II. FORMULATION OF INTEGRAL EQUATIONS

Fig. 1 shows a microstrip-like transmission line which
contains three dielectric layers, multistrip conductors, and
a metallic shield enclosure. The strip conductors are as-
sumed to be negligibly thin and the line lossless.

A hybrid-mode analysis is apparently necessary in this in-
homogeneous structure.  When the scalar potentials for
TM waves and TE waves are defined by y® and y®,
respectively, the electromagnetic (EM) fields of hybrid
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Fig. 1.

Microstrip-like transmission line.

modes [18] are given by
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where  is the angular frequency, u, is the magnetic
permeability of a vacuum, &, is the permittivity in the ith-
medium (¢ = 1,2,3), k; is o &;lto, the subscript ¢ denotes
the transverse direction, a, is the z-directed unit vector, and
B is the unknown phase constant of the hybrid mode.

The general solution of the wave equation in each di-
clectric layer can be obtained by the method of the separa-
tion of variables. After applying the boundary conditions
on the surface of the shielding conductor to the general
solution, one obtains the following form:

A, sinh (2,Vy) sin (a,x)
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and 4,9, B,®, C,?, D,, 4,®, B,®, C,®, and D,* are
constants to be determined.

The boundary conditions of EM fields to connect these
potentials are expressed as follows:

Dy=h
E,y = E,, O<x<a (3a)
H, = H,, 0O<x<a (3b)
Eyy=E»n (0O=sx=<a (o)
Hy =H, (0<xc<a (3d)
Dy=h +h
E,=E; @©O=<x=<a (4a)
E,=E;, @O<x<oa (4b)
f(e7 ¥, (a) < x < ajy,
E, = i=01," ~,g\7, namely, ”on dielectrics)
x 0, (@' < x < a,
i =1,2,---,N, namely, on conductors)
(4c)
0, @ <x< a§'+1,~
H,, — H, e (@) < ;Z%},” )
i=12,---,N) (4d)
H,, = H,, (@’ < x < ajyy,
i=01,--,N) (4o
E,, =0, (@' < x<a,

=N (4f)

First, the EM fields in (1) are substituted for the boundary
conditions in (3a)-(4d). By using the orthogonality of
sinusoidal functions, the constants, 4,, B, C,**, D,®,
4,9, B® C® D ® can be derived as coefficients of the
Fourier series expansion where, for simplicity, the following
notations are defined:

RSO = % [Trows@oa G

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, APRIL 1976

N ai”
G,[9(®)] = _Zl 9(&) sin (a,¢) dé. (5b)
= ﬂt'
The rest of the conditions, (4e) and (4f), result in a set of
homogeneous integral equations on the unknown functions,
@@ <¢é<a,y, i=0]1,-N)and g() @' <& <
a, i = 1,2,--+,N). Physically, g(¢) is proportional to the
z directed electric currents on the boundary surface.

T {POFL] + RAPGLIO]} cos (@) =0,

(ai” £x =< a£+1,i = 0:13..'!N) (63)

20 {RA(BF,Lf(O)] + Qu(B)G.L9(8)]} sin (ax) = O,
(¢/ <x<a',i=12--N) (6b)
where P,(B), Q.(B), and R,(p) are given in the Appendix.

1II. NUMERICAL SOLUTIONS BY NONUNIFORM
DISCRETIZATION

The preceding simultaneous homogeneous integral
equations (6) are numerically solved by the discretization
of the integral regions, {0 < ¢ < a/,a,’ < ¢ < a,","",
ay < ¢ < ay’, ay’ < & < a}, where the number of sub-
regions are {My,M,, - -,M,y}, respectively, and the total
number of subregions is M. When the functions to be solved,
f(&) and g(&), are assumed to be constant in each subregion,
the simultaneous integral equations (6) are rewritten as a
set of simultaneous homogeneous linear equations with M
variables. The determinant of these linear equations should
vanish in order to have nontrivial solutions. The phase
constant S can be calculated by solving this determinant
equation.

The computation accuracy depends on the way of the
discretization when the total number of subregions is fixed.
We apply the nonuniform discretization method, which was
developed in the TEM analysis of microstrip line [19], to
the present case. There is a fact in the EM theory that fields
vary very rapidly near strip-conductor edges. Therefore, our
principle of the discretization is that the integral regions
should be discretized more precisely when the considering
point is closer to the edge. Fig. 2 shows an illustration of the
uniform and nonuniform discretization methods. Fig. 3
shows the computation accuracy of the two discretization
methods in the case of a shielded microstrip line. When the
total number of subregions M is increased, the nonuniform
discretization is seen to result in much faster convergence
than the uniform discretization. The nonuniform discretiza-
tion is employed throughout our work.

The numerical data obtained based on this method are
compared with published data by other methods [8]-[11],
in Fig. 4, and with those by empirical formulas [12]-[14],
in Fig. 5. These curves indicate that our results are very
close to those of Kowalski and Pregla (the mode-matching
method) [11] in a wide range of frequencies. This agreement
verifies the accuracy of the two methods. The empirical
formulas in Fig. 5 seem to lose the accuracy at high
frequencies.
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shows their characteristics for the cases, &,* = 2.55,
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Fig. 8. The f-p characteristics of the shielded slot lmes in Flg 6(d).
hl—h3;45mm hy; = 1.0 mm, d = 2.0 mm, &* = &* = 1.0,
9

g,* = 9.35, and ¢,* = 20.0. It is noted that the character-
istics of the coplanar structure have a similarity to those
of the odd-mode coupled microstrip line, and the slot line
has a quite different nature from microstrip lines, though
both are of the planar structure. Fig. 8 shows the dependence
of the phase constant of the shielded slot lines in Fig. 6(d)
on the frequency and the width of the shield conductor. It
is seen that the phase constant is not much affected by the
width in the high-frequency region since the EM field energy
is concentrated around the slot at high frequencies.

V. HIGHER ORDER MODES OF SHIELDED MICROSTRIP
LiINES

This method was applied to the analysis of higher order
modes of various structures. The cases of the shielded
microstrip line, for example, are shown in Figs. 9-12. The
longitudinal-section electric (LSE) and linear synchronous
motor (LSM) modes of the two-medium waveguide in
Fig. 9 are seen to be gradually changed to stripline modes
when the center strip conductor appears and the strip
width is increased.

By comparing Figs. 9 and 10, the following are observed.

1) The dominant mode close to the TEM solution appears
in Fig. 10 because of the existence of the center conductor.

2) The degeneracies existing between even modes (solid
lines) and between odd modes (dotted lines) in Fig. 9 have
been resolved in Fig. 10. However, the degeneracies between
even and odd modes in Fig. 9 have not been resolved in
Fig. 10 because of the structural symmetry.

3) While the odd-mode characteristics in Fig. 9 are not
much changed in Fig. 10, the even-mode characteristics are
quite changed there.

When the characteristics of the lines with various strip
widths are compared in Figs. 10~12, the following are
observed with the increase of the width.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, APRIL 1976

3.0
) 11.43
€.
20 DOMINANT MODE XEL R AETA
| R
f_ f—12.7 —
8. o UNIT @ MILLIMETERS
1.0
[t} 4
10 15 20 25
FrRecuency  (GHz)
Fig. 9. The f-§ characteristics of the LSE and LSM modes in a

two-medium waveguide.

3.0
- X ponnant mobe 1
11.43
1 g
2.0 = T 378 soa
~ F“:—— 12.7 —f
_(3_ i UNIT @ MILLIMETERS
g.
1.0
0 ;!
10 15 20 25

Freauency (GHz)

Fig. 10. The f-f characteristics of the shielded microstrip line with
the strip width of 0.635 mm.
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Fig. 11. The f-pB characteristics of the shielded microstrip line with
the strip width of 1.27 mm, compared with other available data.
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Fig. 12. The f-B characteristics of the shielded microstrip line with
the strip width of 2.54 mm.

1) The phase constant of the dominant mode is gradually
changed.

2) While the even-mode characteristics are not much
changed, the odd-mode characteristics are changed rapidly.

3) The cutoff frequencies of the first- and the third-order
mode of the shielded microstrip line are almost equal to the
cutoff frequencies of the LSE and LSM modes of the
corresponding two-medium waveguide.

4) The first higher order mode of the shielded microstrip
line is the even mode when the strip is narrow, and the odd
mode when the strip is wide,

Some of these numerical data are compared with other
available data [8], [11] in Fig. 11. Again, our results are
in good agreement with those of Kowalski and Pregla [11].
A small dip is noticed on the curve of the third higher order
mode (solid line) at about 22 GHz in Fig. 11. The complexity
of the phase constant curves for higher order modes such as
this dip can be understood only by considering the resolution
of waveguide-mode degeneracies as pointed out in the
preceding.

V1. CONCLUSIONS

This paper described a method to analyze the microstrip-
like transmission lines. The nonuniform discretization ap-
proach was found to be numerically effective in finding
solutions of integral equations for the microstrip-like
transmission lines. The results of computations in the case
of the shielded microstrip line were very close to one of
published data in a wide range of frequencies. The limita-
tions of published empirical formulas at high frequencies
were also recognized. Various planar transmission lines
were compared to each other from the viewpoint of the
J-B characteristics.

The higher order modes of the shielded microstrip lines
were compared with those of the LSE and LSM modes. The
observation on the similarity of cutoff frequencies between
these modes may be useful to estimate the frequency range
of the dominant mode of the microstrip line in a simple way.
It was also found to be important to investigate the resolu-
tion process of waveguide-mode degeneracies due to the
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existence of a center strip conductor in order to explain the
complex shape of the phase constant curves for higher
order modes of microstrip lines.

) APPENDIX
P(B),R(P),0,(B) in (6) are given by
P,(p) = 20 [a,.“)ocn(” {tanhz (@,Vhy) + & tanh? (oc,,(z)hz)}

n 82
+ (“n(m + ?%‘m) tanh (,h,) tanh (Otn(z)hz)]
2
&, tanh (4,7hy)
Ry(§) = 20 [ o, tanh 6, 9h) + % 0, tah 2,V
" 82
+ o, tanh? (,Vh,) tanh (2,Ph,) + 0,
2 _. 2
82 an( ) .
o, tanh (0, Ph3) + o,Pa,®

{tanhz (@, Ph,) + & tanh? (a,,<2>h2)}
&2

+ (oc,,(l)2 + zlocn(z)z) tanh (o, k) tanh (ocn(z)hz)]
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1 kP A
0u(B) = — 2 [{8—’ 2, Ve, D + (an(m + an(m)
An Do €3 &y
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- tanh? (a,Ph;) tanh? (oz,,(z)hz)}
-+ o, tanh (a,®h;)

P g
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1)2
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&
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A, = [%‘”(kﬁ ~ 4,2 tanh (4,Vh;) + 2L 0,
&

(k2 — a,) tanh (0,®h,)

+ 0, D(k,? — a,2) tanh? (o, Vh,) tanh (o, 2h,)
2) J81 () 2 2 i 2 2
+‘xn() '—(kZ _an)+—2—(k2 _kl)
82 a2
tanh (“n(l)h ) tanh? (“n(z)hl)] an(3) tanh (an(s)hs)
+ (ks? = a,%) {06,.(1)0!,,(2) {’Canh2 (o, Phy)

& &,

- tanh (o,(Ph,) tanh (oc,,(z)hz)] .
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